Reversible Optical Recording on Epitaxial Indium Selenide Phase-Change Media

A. Chaiken, G.A. Gibson, K. Nauka, C.C. Yang, B.S. Yeh, R. Bicknell, J. Chen, H. Liao, S. Subramanian and D.D. Lindig

*Hewlett-Packard**

J.B. Jasinski and Z. Liliental-Weber Lawrence Berkeley National Lab

Electron-Beam Recording on Phase-Change Media

Features:

- Unpatterned media scanned in two dimensions;
- Reading and writing via electron-beam field emitters in vacuum;
- Phase-change media for data storage.

Electron-Beam Emitters for Read/Write

Spindt metal tips

Nodular MIS emitters

NanoTEL emitters

Considered 3 different kinds of emitters:

- Traditional Spindt evaporated metal emitters;
- Flat MIS emitters whose current originates from tiny poly-Si nodules;
- E-beam lithographic version of the nodule-enhanced flat emitters.

MEMS X-Y Micromover for Media Scanning

Features:

- Deep Si etching allows 40:1 aspect-ratio springs;
- >600:1 out-of-plane:in-plane stiffness ratio;
- >50% areal efficiency;
- CMOS compatible process for integration of control electronics.

Optical vs. Electron-Beam Recording

The medium must be a phase-change material with good electrical properties!

Electron-Beam Induced Current with keV Electrons Gives Gain

$$\begin{split} I_{coll} \approx & (collection \ efficiency) \ *(E_{beam}/3 * E_{bandgap}) * I_{beam} \\ Gain \equiv & I_{coll}/I_{beam}, \ as \ high \ as \ 65 \ at \ 2 \ keV. \end{split}$$

Decent Electrical Properties of InSe/GaSe Heterojunction Diodes

GaSe is natively p-type, while InSe is natively n-type. Collection efficiencies 5-10%.

- GaSe grows epitaxially on Si(111) [Palmer et al., JJAP 1993]
- InSe grows epitaxially on GaSe [Nakayama et al., Surf. Sci. 1991]
- Substantial electrical and thermal anistropy in both materials.

Phase-change materials with decent semiconducting properties that grow well on Si!

Good Quality Epitaxial InSe/GaSe/Si(111) Films

Growth is subject to twins, stacking faults and threading dislocations as in familiar epitaxial systems.

See J.B. Jasinski et al., MRS 2003 Symposium GG proceedings.

Diffraction-limited, 30 nS 488 nm laser marks. Reflectivity changes sign at damage threshold.

Amorphous Laser Marks

Laser used to simulate e-beam recording.

Electronic Contrast Observed without Surface Damage

SEM Image

EBIC image

Marks are barely visible in SEM image. Spacing = 0.9 μ m.

In inclusions cause large "media noise."

Pulsewidth < thermal equilibration time gives small mark diameter ≈ 200 nm.

Annealed at 300 °C for 5 minutes.

All amorphous bits have a gain < 40 before annealing and ≥ 50 afterwards.

Erasure without Surface Damage

 $0.5 = \text{Write pulse only}; 1.0 = \text{Write/Erase}; 1.5 = \text{WEW} \dots$

W = 4.7 mW, 30 nS; E = 1.8 mW, 1 mS.

Up to 100 cycles with only minor degradation.

Points indicate values obtained by averaging across rows of a matrix.

Optimize contrast via improved film growth, film thickness, cap layer parameters, beam energy and device bias.

Scaling of Erasure Time Depends on Recrystallization Mode

Homogeneous nucleation plus growth

Regrowth from crystalline matrix without nucleation

Like GeSbTe

Like InAgSbTe

Some Evidence for Regrowth from the Matrix

As erase pulse lengthens, bright ring grows inward.

Final mark has larger signal than surrounding matrix.

In Situ TEM Recrystallization Occurs from Mark Edge

Write pulse only

Write + 1 S irradiation

In situ TEM observation of electron-beam exposure suggest regrowth from the edge.

Growth-dominant behavior can occur under some circumstances.

Larger margins correspond to thicker cap layers.

Best cycling behavior has not been demonstrated on films with best gains.

Summary

- High-quality phase-change media films have been grown on Si(111).
- The III-VI semiconductor phase-change media form diodes with reasonable collection efficiency.
- Erasable laser marks give a usable contrast in diode signal.
- Apparent growth-dominant behavior implies short erasure time for small-diameter marks.
- Up to 100 write-erase cycles have been achieved without significant degradation.
- Optimization of film growth, device design and read/write strategy has a long way to go.

InSe and GaSe Crystal Structure

Larger View of E-beam Recrystallization at Edges

Diameter of bit at surface is about 800 nm (much larger than erasable bits).