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Electron-Beam Recording on Phase-Change Media
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Features:

e Unpatterned media scanned in two dimensions;
e Reading and writing via electron-beam field emitters in vacuum;

e Phase-change media for data storage.
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Electron-Beam Emitters for Read /Write

Nodular MIS emitters NanoTEL emitters

o+ Silicon

Considered 3 different kinds of emitters:
e Traditional Spindt evaporated metal emitters;
e Flat MIS emitters whose current originates from tiny poly-Si nodules;

e E-beam lithographic version of the nodule-enhanced flat emitters.
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MEMS X-Y Micromover for Media Scanning
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Features:

e Deep Si etching allows 40:1 aspect-ratio springs;
e >(00:1 out-of-plane:in-plane stiffness ratio;
e >50% areal efficiency;

e CMOS compatible process for integration of control electronics.
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Optical vs. Electron-Beam Recording
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The medium must be a phase-change material with good electrical properties!
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Electron-Beam Induced Current with keV Electrons
Gives Gain
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[eon A (collection efficiency) (Epeqm/3 * Ebandgap) * Iheam
Gain = I.;1/Ijeam, @s high as 65 at 2 keV.
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Decent Electrical Properties of InSe/GaSe
Heterojunction Diodes
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Bias between InSe top contact and Si (V)

GaSe is natively p-type, while InSe is natively n-type.
Collection efficiencies 5-10%.
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Crystal Structure of III-VI InSe and GaSe

e GaSe grows epitaxially on Si(111) [Palmer et al., JJAP 1993]
e InSe grows epitaxially on GaSe [Nakayama et al., Surf. Sci. 1991]

e Substantial electrical and thermal anistropy in both materials.
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Good Quality Epitaxial InSe/GaSe/Si(111) Films
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Phase-change materials with decent semiconducting properties that

erow well on Si!

Hewlett-Packard

ALISON CHAIKEN



Good Quality Epitaxial InSe/GaSe/Si(111) Films

Growth is subject to twins, stacking faults and threading dislocations as in
familiar epitaxial systems.

See J.B. Jasinski et al., MRS 2003 Symposium GG proceedings.
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Making Amorphous Laser Marks
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Diffraction-limited, 30 nS 488 nm laser marks.

Reflectivity changes sign at damage threshold.
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Amorphous Laser Marks
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Laser used to simulate e-beam recording.
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Electronic Contrast Observed without Surface
Damage

SEM Image EBIC image

Marks are barely visible in SEM image. Spacing = 0.9 pm.
In inclusions cause large “media noise.”

Pulsewidth < thermal equilibration time gives small mark diameter ~ 200 nm.
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Oven Erasure of Amorphous Bits
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Annealed at 300 °C for b minutes.

All amorphous bits have a gain < 40 before annealing and > 50 afterwards.
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Erasure without Surface Damage

0.5 = Write pulse only; 1.0 = Write/Erase; 1.5 = WEW . ..
W =47mW, 30 nS; E = 1.8 mW, 1 mS.
Up to 100 cycles with only minor degradation.
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15 Cycles without Degradation Achieved
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Points indicate values obtained by averaging across rows of a matrix.

Optimize contrast via improved film growth, film thickness, cap layer parame-
ters, beam energy and device bias.
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Scaling of Erasure Time Depends on
Recrystallization Mode

Homogeneous nucleation Regrowth from crystalline matrix
plus growth without nucleation
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Some Evidence for Regrowth from the Matrix

Write pulse only Write + 10 uS erase Write + 100 uS erase

As erase pulse lengthens, bright ring grows inward.

Final mark has larger signal than surrounding matrix.
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In Situ TEM Recrystallization Occurs from Mark
Edge

Write pulse only Write + 1 S irradiation

In situ TEM observation of electron-beam exposure suggest re-
erowth from the edge.

Growth-dominant behavior can occur under some circumstances.
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Margins for Write and Erase Processes

are Small
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Larger margins correspond to thicker cap layers.
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Best cycling behavior has not been demonstrated on films with best gains.
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Summary

e High-quality phase-change media films have been grown on

Si(111).

e The III-VI semiconductor phase-change media form diodes with
reasonable collection efficiency.

e Frasable laser marks give a usable contrast in diode signal.

e Apparent growth-dominant behavior implies short erasure time
for small-diameter marks.

e Up to 100 write-erase cycles have been achieved without signif-
icant degradation.

e Optimization of film growth, device design and read /write strat-
egy has a long way to go.
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Data Readback Concept
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Electron-Beam Readback of a Data Track
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InSe and GaSe Crystal Structure
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Larger View of E-beam Recrystallization at Edges

Diameter of bit at surface is about 800 nm (much larger than
erasable bits).
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